/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* TO DO: * 1. Perhaps keep several copies of the encrypted key, in case something * goes horribly wrong? * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptfs.h" #define LOG_TAG "Cryptfs" #include "cutils/log.h" #include "cutils/properties.h" #include "cutils/android_reboot.h" #include "hardware_legacy/power.h" #include #include "VolumeManager.h" #include "VoldUtil.h" #include "crypto_scrypt.h" #define UNUSED __attribute__((unused)) #define DM_CRYPT_BUF_SIZE 4096 #define DATA_MNT_POINT "/data" #define HASH_COUNT 2000 #define KEY_LEN_BYTES 16 #define IV_LEN_BYTES 16 #define KEY_IN_FOOTER "footer" #define EXT4_FS 1 #define FAT_FS 2 #define TABLE_LOAD_RETRIES 10 char *me = "cryptfs"; static unsigned char saved_master_key[KEY_LEN_BYTES]; static char *saved_mount_point; static int master_key_saved = 0; static struct crypt_persist_data *persist_data = NULL; extern struct fstab *fstab; static void cryptfs_reboot(int recovery) { if (recovery) { property_set(ANDROID_RB_PROPERTY, "reboot,recovery"); } else { property_set(ANDROID_RB_PROPERTY, "reboot"); } sleep(20); /* Shouldn't get here, reboot should happen before sleep times out */ return; } static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) { memset(io, 0, dataSize); io->data_size = dataSize; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags; if (name) { strncpy(io->name, name, sizeof(io->name)); } } /** * Gets the default device scrypt parameters for key derivation time tuning. * The parameters should lead to about one second derivation time for the * given device. */ static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) { const int default_params[] = SCRYPT_DEFAULTS; int params[] = SCRYPT_DEFAULTS; char paramstr[PROPERTY_VALUE_MAX]; char *token; char *saveptr; int i; property_get(SCRYPT_PROP, paramstr, ""); if (paramstr[0] != '\0') { /* * The token we're looking for should be three integers separated by * colons (e.g., "12:8:1"). Scan the property to make sure it matches. */ for (i = 0, token = strtok_r(paramstr, ":", &saveptr); token != NULL && i < 3; i++, token = strtok_r(NULL, ":", &saveptr)) { char *endptr; params[i] = strtol(token, &endptr, 10); /* * Check that there was a valid number and it's 8-bit. If not, * break out and the end check will take the default values. */ if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) { break; } } /* * If there were not enough tokens or a token was malformed (not an * integer), it will end up here and the default parameters can be * taken. */ if ((i != 3) || (token != NULL)) { SLOGW("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr); memcpy(params, default_params, sizeof(params)); } } ftr->N_factor = params[0]; ftr->r_factor = params[1]; ftr->p_factor = params[2]; } static unsigned int get_fs_size(char *dev) { int fd, block_size; struct ext4_super_block sb; off64_t len; if ((fd = open(dev, O_RDONLY)) < 0) { SLOGE("Cannot open device to get filesystem size "); return 0; } if (lseek64(fd, 1024, SEEK_SET) < 0) { SLOGE("Cannot seek to superblock"); return 0; } if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) { SLOGE("Cannot read superblock"); return 0; } close(fd); block_size = 1024 << sb.s_log_block_size; /* compute length in bytes */ len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size; /* return length in sectors */ return (unsigned int) (len / 512); } static int get_crypt_ftr_info(char **metadata_fname, off64_t *off) { static int cached_data = 0; static off64_t cached_off = 0; static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; int fd; char key_loc[PROPERTY_VALUE_MAX]; char real_blkdev[PROPERTY_VALUE_MAX]; unsigned int nr_sec; int rc = -1; if (!cached_data) { fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc)); if (!strcmp(key_loc, KEY_IN_FOOTER)) { if ( (fd = open(real_blkdev, O_RDWR)) < 0) { SLOGE("Cannot open real block device %s\n", real_blkdev); return -1; } if ((nr_sec = get_blkdev_size(fd))) { /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname)); cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; cached_data = 1; } else { SLOGE("Cannot get size of block device %s\n", real_blkdev); } close(fd); } else { strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname)); cached_off = 0; cached_data = 1; } } if (cached_data) { if (metadata_fname) { *metadata_fname = cached_metadata_fname; } if (off) { *off = cached_off; } rc = 0; } return rc; } /* key or salt can be NULL, in which case just skip writing that value. Useful to * update the failed mount count but not change the key. */ static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) { int fd; unsigned int nr_sec, cnt; /* starting_off is set to the SEEK_SET offset * where the crypto structure starts */ off64_t starting_off; int rc = -1; char *fname = NULL; struct stat statbuf; if (get_crypt_ftr_info(&fname, &starting_off)) { SLOGE("Unable to get crypt_ftr_info\n"); return -1; } if (fname[0] != '/') { SLOGE("Unexpected value for crypto key location\n"); return -1; } if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) { SLOGE("Cannot open footer file %s for put\n", fname); return -1; } /* Seek to the start of the crypt footer */ if (lseek64(fd, starting_off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot write real block device footer\n"); goto errout; } fstat(fd, &statbuf); /* If the keys are kept on a raw block device, do not try to truncate it. */ if (S_ISREG(statbuf.st_mode)) { if (ftruncate(fd, 0x4000)) { SLOGE("Cannot set footer file size\n"); goto errout; } } /* Success! */ rc = 0; errout: close(fd); return rc; } static inline int unix_read(int fd, void* buff, int len) { return TEMP_FAILURE_RETRY(read(fd, buff, len)); } static inline int unix_write(int fd, const void* buff, int len) { return TEMP_FAILURE_RETRY(write(fd, buff, len)); } static void init_empty_persist_data(struct crypt_persist_data *pdata, int len) { memset(pdata, 0, len); pdata->persist_magic = PERSIST_DATA_MAGIC; pdata->persist_valid_entries = 0; } /* A routine to update the passed in crypt_ftr to the lastest version. * fd is open read/write on the device that holds the crypto footer and persistent * data, crypt_ftr is a pointer to the struct to be updated, and offset is the * absolute offset to the start of the crypt_mnt_ftr on the passed in fd. */ static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset) { int orig_major = crypt_ftr->major_version; int orig_minor = crypt_ftr->minor_version; if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) { struct crypt_persist_data *pdata; off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET; SLOGW("upgrading crypto footer to 1.1"); pdata = malloc(CRYPT_PERSIST_DATA_SIZE); if (pdata == NULL) { SLOGE("Cannot allocate persisent data\n"); return; } memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE); /* Need to initialize the persistent data area */ if (lseek64(fd, pdata_offset, SEEK_SET) == -1) { SLOGE("Cannot seek to persisent data offset\n"); return; } /* Write all zeros to the first copy, making it invalid */ unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); /* Write a valid but empty structure to the second copy */ init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE); /* Update the footer */ crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; crypt_ftr->persist_data_offset[0] = pdata_offset; crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE; crypt_ftr->minor_version = 1; } if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version)) { SLOGW("upgrading crypto footer to 1.2"); /* But keep the old kdf_type. * It will get updated later to KDF_SCRYPT after the password has been verified. */ crypt_ftr->kdf_type = KDF_PBKDF2; get_device_scrypt_params(crypt_ftr); crypt_ftr->minor_version = 2; } if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) { if (lseek64(fd, offset, SEEK_SET) == -1) { SLOGE("Cannot seek to crypt footer\n"); return; } unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr)); } } static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) { int fd; unsigned int nr_sec, cnt; off64_t starting_off; int rc = -1; char *fname = NULL; struct stat statbuf; if (get_crypt_ftr_info(&fname, &starting_off)) { SLOGE("Unable to get crypt_ftr_info\n"); return -1; } if (fname[0] != '/') { SLOGE("Unexpected value for crypto key location\n"); return -1; } if ( (fd = open(fname, O_RDWR)) < 0) { SLOGE("Cannot open footer file %s for get\n", fname); return -1; } /* Make sure it's 16 Kbytes in length */ fstat(fd, &statbuf); if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { SLOGE("footer file %s is not the expected size!\n", fname); goto errout; } /* Seek to the start of the crypt footer */ if (lseek64(fd, starting_off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot read real block device footer\n"); goto errout; } if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { SLOGE("Bad magic for real block device %s\n", fname); goto errout; } if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { SLOGE("Cannot understand major version %d real block device footer; expected %d\n", crypt_ftr->major_version, CURRENT_MAJOR_VERSION); goto errout; } if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", crypt_ftr->minor_version, CURRENT_MINOR_VERSION); } /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the * copy on disk before returning. */ if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) { upgrade_crypt_ftr(fd, crypt_ftr, starting_off); } /* Success! */ rc = 0; errout: close(fd); return rc; } static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr) { if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size > crypt_ftr->persist_data_offset[1]) { SLOGE("Crypt_ftr persist data regions overlap"); return -1; } if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) { SLOGE("Crypt_ftr persist data region 0 starts after region 1"); return -1; } if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) - (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) > CRYPT_FOOTER_OFFSET) { SLOGE("Persistent data extends past crypto footer"); return -1; } return 0; } static int load_persistent_data(void) { struct crypt_mnt_ftr crypt_ftr; struct crypt_persist_data *pdata = NULL; char encrypted_state[PROPERTY_VALUE_MAX]; char *fname; int found = 0; int fd; int ret; int i; if (persist_data) { /* Nothing to do, we've already loaded or initialized it */ return 0; } /* If not encrypted, just allocate an empty table and initialize it */ property_get("ro.crypto.state", encrypted_state, ""); if (strcmp(encrypted_state, "encrypted") ) { pdata = malloc(CRYPT_PERSIST_DATA_SIZE); if (pdata) { init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE); persist_data = pdata; return 0; } return -1; } if(get_crypt_ftr_and_key(&crypt_ftr)) { return -1; } if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) { SLOGE("Crypt_ftr version doesn't support persistent data"); return -1; } if (get_crypt_ftr_info(&fname, NULL)) { return -1; } ret = validate_persistent_data_storage(&crypt_ftr); if (ret) { return -1; } fd = open(fname, O_RDONLY); if (fd < 0) { SLOGE("Cannot open %s metadata file", fname); return -1; } if (persist_data == NULL) { pdata = malloc(crypt_ftr.persist_data_size); if (pdata == NULL) { SLOGE("Cannot allocate memory for persistent data"); goto err; } } for (i = 0; i < 2; i++) { if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) { SLOGE("Cannot seek to read persistent data on %s", fname); goto err2; } if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){ SLOGE("Error reading persistent data on iteration %d", i); goto err2; } if (pdata->persist_magic == PERSIST_DATA_MAGIC) { found = 1; break; } } if (!found) { SLOGI("Could not find valid persistent data, creating"); init_empty_persist_data(pdata, crypt_ftr.persist_data_size); } /* Success */ persist_data = pdata; close(fd); return 0; err2: free(pdata); err: close(fd); return -1; } static int save_persistent_data(void) { struct crypt_mnt_ftr crypt_ftr; struct crypt_persist_data *pdata; char *fname; off64_t write_offset; off64_t erase_offset; int found = 0; int fd; int ret; if (persist_data == NULL) { SLOGE("No persistent data to save"); return -1; } if(get_crypt_ftr_and_key(&crypt_ftr)) { return -1; } if ((crypt_ftr.major_version != 1) || (crypt_ftr.minor_version != 1)) { SLOGE("Crypt_ftr version doesn't support persistent data"); return -1; } ret = validate_persistent_data_storage(&crypt_ftr); if (ret) { return -1; } if (get_crypt_ftr_info(&fname, NULL)) { return -1; } fd = open(fname, O_RDWR); if (fd < 0) { SLOGE("Cannot open %s metadata file", fname); return -1; } pdata = malloc(crypt_ftr.persist_data_size); if (pdata == NULL) { SLOGE("Cannot allocate persistant data"); goto err; } if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) { SLOGE("Cannot seek to read persistent data on %s", fname); goto err2; } if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) { SLOGE("Error reading persistent data before save"); goto err2; } if (pdata->persist_magic == PERSIST_DATA_MAGIC) { /* The first copy is the curent valid copy, so write to * the second copy and erase this one */ write_offset = crypt_ftr.persist_data_offset[1]; erase_offset = crypt_ftr.persist_data_offset[0]; } else { /* The second copy must be the valid copy, so write to * the first copy, and erase the second */ write_offset = crypt_ftr.persist_data_offset[0]; erase_offset = crypt_ftr.persist_data_offset[1]; } /* Write the new copy first, if successful, then erase the old copy */ if (lseek(fd, write_offset, SEEK_SET) < 0) { SLOGE("Cannot seek to write persistent data"); goto err2; } if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) == (int) crypt_ftr.persist_data_size) { if (lseek(fd, erase_offset, SEEK_SET) < 0) { SLOGE("Cannot seek to erase previous persistent data"); goto err2; } fsync(fd); memset(pdata, 0, crypt_ftr.persist_data_size); if (unix_write(fd, pdata, crypt_ftr.persist_data_size) != (int) crypt_ftr.persist_data_size) { SLOGE("Cannot write to erase previous persistent data"); goto err2; } fsync(fd); } else { SLOGE("Cannot write to save persistent data"); goto err2; } /* Success */ free(pdata); close(fd); return 0; err2: free(pdata); err: close(fd); return -1; } /* Convert a binary key of specified length into an ascii hex string equivalent, * without the leading 0x and with null termination */ void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i=0, a=0; i> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, char *real_blk_name, const char *name, int fd, char *extra_params) { char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; struct dm_target_spec *tgt; char *crypt_params; char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ int i; io = (struct dm_ioctl *) buffer; /* Load the mapping table for this device */ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); io->target_count = 1; tgt->status = 0; tgt->sector_start = 0; tgt->length = crypt_ftr->fs_size; strcpy(tgt->target_type, "crypt"); crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name, extra_params); crypt_params += strlen(crypt_params) + 1; crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ tgt->next = crypt_params - buffer; for (i = 0; i < TABLE_LOAD_RETRIES; i++) { if (! ioctl(fd, DM_TABLE_LOAD, io)) { break; } usleep(500000); } if (i == TABLE_LOAD_RETRIES) { /* We failed to load the table, return an error */ return -1; } else { return i + 1; } } static int get_dm_crypt_version(int fd, const char *name, int *version) { char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; struct dm_target_versions *v; int i; io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_LIST_VERSIONS, io)) { return -1; } /* Iterate over the returned versions, looking for name of "crypt". * When found, get and return the version. */ v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)]; while (v->next) { if (! strcmp(v->name, "crypt")) { /* We found the crypt driver, return the version, and get out */ version[0] = v->version[0]; version[1] = v->version[1]; version[2] = v->version[2]; return 0; } v = (struct dm_target_versions *)(((char *)v) + v->next); } return -1; } static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, char *real_blk_name, char *crypto_blk_name, const char *name) { char buffer[DM_CRYPT_BUF_SIZE]; char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ char *crypt_params; struct dm_ioctl *io; struct dm_target_spec *tgt; unsigned int minor; int fd; int i; int retval = -1; int version[3]; char *extra_params; int load_count; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_CREATE, io)) { SLOGE("Cannot create dm-crypt device\n"); goto errout; } /* Get the device status, in particular, the name of it's device file */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { SLOGE("Cannot retrieve dm-crypt device status\n"); goto errout; } minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); extra_params = ""; if (! get_dm_crypt_version(fd, name, version)) { /* Support for allow_discards was added in version 1.11.0 */ if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) { extra_params = "1 allow_discards"; SLOGI("Enabling support for allow_discards in dmcrypt.\n"); } } load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd, extra_params); if (load_count < 0) { SLOGE("Cannot load dm-crypt mapping table.\n"); goto errout; } else if (load_count > 1) { SLOGI("Took %d tries to load dmcrypt table.\n", load_count); } /* Resume this device to activate it */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { SLOGE("Cannot resume the dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static int delete_crypto_blk_dev(char *name) { int fd; char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_REMOVE, io)) { SLOGE("Cannot remove dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey, void *params UNUSED) { /* Turn the password into a key and IV that can decrypt the master key */ PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); } static void scrypt(char *passwd, unsigned char *salt, unsigned char *ikey, void *params) { struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; int N = 1 << ftr->N_factor; int r = 1 << ftr->r_factor; int p = 1 << ftr->p_factor; /* Turn the password into a key and IV that can decrypt the master key */ crypto_scrypt((unsigned char *) passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES); } static int encrypt_master_key(char *passwd, unsigned char *salt, unsigned char *decrypted_master_key, unsigned char *encrypted_master_key, struct crypt_mnt_ftr *crypt_ftr) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ get_device_scrypt_params(crypt_ftr); scrypt(passwd, salt, ikey, crypt_ftr); /* Initialize the decryption engine */ if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { SLOGE("EVP_EncryptInit failed\n"); return -1; } EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */ /* Encrypt the master key */ if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len, decrypted_master_key, KEY_LEN_BYTES)) { SLOGE("EVP_EncryptUpdate failed\n"); return -1; } if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) { SLOGE("EVP_EncryptFinal failed\n"); return -1; } if (encrypted_len + final_len != KEY_LEN_BYTES) { SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len); return -1; } else { return 0; } } static int decrypt_master_key_aux(char *passwd, unsigned char *salt, unsigned char *encrypted_master_key, unsigned char *decrypted_master_key, kdf_func kdf, void *kdf_params) { unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX d_ctx; int decrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ kdf(passwd, salt, ikey, kdf_params); /* Initialize the decryption engine */ if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { return -1; } EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ /* Decrypt the master key */ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, KEY_LEN_BYTES)) { return -1; } if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { return -1; } if (decrypted_len + final_len != KEY_LEN_BYTES) { return -1; } else { return 0; } } static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params) { if (ftr->kdf_type == KDF_SCRYPT) { *kdf = scrypt; *kdf_params = ftr; } else { *kdf = pbkdf2; *kdf_params = NULL; } } static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key, struct crypt_mnt_ftr *crypt_ftr) { kdf_func kdf; void *kdf_params; int ret; get_kdf_func(crypt_ftr, &kdf, &kdf_params); ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, decrypted_master_key, kdf, kdf_params); if (ret != 0) { SLOGW("failure decrypting master key"); } return ret; } static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt, struct crypt_mnt_ftr *crypt_ftr) { int fd; unsigned char key_buf[KEY_LEN_BYTES]; EVP_CIPHER_CTX e_ctx; int encrypted_len, final_len; /* Get some random bits for a key */ fd = open("/dev/urandom", O_RDONLY); read(fd, key_buf, sizeof(key_buf)); read(fd, salt, SALT_LEN); close(fd); /* Now encrypt it with the password */ return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr); } static int wait_and_unmount(char *mountpoint) { int i, rc; #define WAIT_UNMOUNT_COUNT 20 /* Now umount the tmpfs filesystem */ for (i=0; ifs_size = %lld\n", crypt_ftr.fs_size); orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { if (decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr)) { SLOGE("Failed to decrypt master key\n"); return -1; } } if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label)) { SLOGE("Error creating decrypted block device\n"); return -1; } /* If init detects an encrypted filesystem, it writes a file for each such * encrypted fs into the tmpfs /data filesystem, and then the framework finds those * files and passes that data to me */ /* Create a tmp mount point to try mounting the decryptd fs * Since we're here, the mount_point should be a tmpfs filesystem, so make * a directory in it to test mount the decrypted filesystem. */ sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) { SLOGE("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(label); crypt_ftr.failed_decrypt_count++; } else { /* Success, so just umount and we'll mount it properly when we restart * the framework. */ umount(tmp_mount_point); crypt_ftr.failed_decrypt_count = 0; } if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) { put_crypt_ftr_and_key(&crypt_ftr); } if (crypt_ftr.failed_decrypt_count) { /* We failed to mount the device, so return an error */ rc = crypt_ftr.failed_decrypt_count; } else { /* Woot! Success! Save the name of the crypto block device * so we can mount it when restarting the framework. */ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); /* Also save a the master key so we can reencrypted the key * the key when we want to change the password on it. */ memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES); saved_mount_point = strdup(mount_point); master_key_saved = 1; SLOGD("%s(): Master key saved\n", __FUNCTION__); rc = 0; /* * Upgrade if we're not using the latest KDF. */ if (crypt_ftr.kdf_type != KDF_SCRYPT) { crypt_ftr.kdf_type = KDF_SCRYPT; rc = encrypt_master_key(passwd, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr); if (!rc) { rc = put_crypt_ftr_and_key(&crypt_ftr); } SLOGD("Key Derivation Function upgrade: rc=%d\n", rc); } } return rc; } /* Called by vold when it wants to undo the crypto mapping of a volume it * manages. This is usually in response to a factory reset, when we want * to undo the crypto mapping so the volume is formatted in the clear. */ int cryptfs_revert_volume(const char *label) { return delete_crypto_blk_dev((char *)label); } /* * Called by vold when it's asked to mount an encrypted, nonremovable volume. * Setup a dm-crypt mapping, use the saved master key from * setting up the /data mapping, and return the new device path. */ int cryptfs_setup_volume(const char *label, int major, int minor, char *crypto_sys_path, unsigned int max_path, int *new_major, int *new_minor) { char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN]; struct crypt_mnt_ftr sd_crypt_ftr; struct stat statbuf; int nr_sec, fd; sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor); get_crypt_ftr_and_key(&sd_crypt_ftr); /* Update the fs_size field to be the size of the volume */ fd = open(real_blkdev, O_RDONLY); nr_sec = get_blkdev_size(fd); close(fd); if (nr_sec == 0) { SLOGE("Cannot get size of volume %s\n", real_blkdev); return -1; } sd_crypt_ftr.fs_size = nr_sec; create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, crypto_blkdev, label); stat(crypto_blkdev, &statbuf); *new_major = MAJOR(statbuf.st_rdev); *new_minor = MINOR(statbuf.st_rdev); /* Create path to sys entry for this block device */ snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1); return 0; } int cryptfs_crypto_complete(void) { return do_crypto_complete("/data"); } int cryptfs_check_passwd(char *passwd) { int rc = -1; rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata"); return rc; } int cryptfs_verify_passwd(char *passwd) { struct crypt_mnt_ftr crypt_ftr; /* Allocate enough space for a 256 bit key, but we may use less */ unsigned char decrypted_master_key[32]; char encrypted_state[PROPERTY_VALUE_MAX]; int rc; property_get("ro.crypto.state", encrypted_state, ""); if (strcmp(encrypted_state, "encrypted") ) { SLOGE("device not encrypted, aborting"); return -2; } if (!master_key_saved) { SLOGE("encrypted fs not yet mounted, aborting"); return -1; } if (!saved_mount_point) { SLOGE("encrypted fs failed to save mount point, aborting"); return -1; } if (get_crypt_ftr_and_key(&crypt_ftr)) { SLOGE("Error getting crypt footer and key\n"); return -1; } if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { /* If the device has no password, then just say the password is valid */ rc = 0; } else { decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr); if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { /* They match, the password is correct */ rc = 0; } else { /* If incorrect, sleep for a bit to prevent dictionary attacks */ sleep(1); rc = 1; } } return rc; } /* Initialize a crypt_mnt_ftr structure. The keysize is * defaulted to 16 bytes, and the filesystem size to 0. * Presumably, at a minimum, the caller will update the * filesystem size and crypto_type_name after calling this function. */ static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr) { off64_t off; memset(ftr, 0, sizeof(struct crypt_mnt_ftr)); ftr->magic = CRYPT_MNT_MAGIC; ftr->major_version = CURRENT_MAJOR_VERSION; ftr->minor_version = CURRENT_MINOR_VERSION; ftr->ftr_size = sizeof(struct crypt_mnt_ftr); ftr->keysize = KEY_LEN_BYTES; ftr->kdf_type = KDF_SCRYPT; get_device_scrypt_params(ftr); ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE; if (get_crypt_ftr_info(NULL, &off) == 0) { ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET; ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET + ftr->persist_data_size; } } static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type) { const char *args[10]; char size_str[32]; /* Must be large enough to hold a %lld and null byte */ int num_args; int status; int tmp; int rc = -1; if (type == EXT4_FS) { args[0] = "/system/bin/make_ext4fs"; args[1] = "-a"; args[2] = "/data"; args[3] = "-l"; snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512); args[4] = size_str; args[5] = crypto_blkdev; num_args = 6; SLOGI("Making empty filesystem with command %s %s %s %s %s %s\n", args[0], args[1], args[2], args[3], args[4], args[5]); } else if (type== FAT_FS) { args[0] = "/system/bin/newfs_msdos"; args[1] = "-F"; args[2] = "32"; args[3] = "-O"; args[4] = "android"; args[5] = "-c"; args[6] = "8"; args[7] = "-s"; snprintf(size_str, sizeof(size_str), "%" PRId64, size); args[8] = size_str; args[9] = crypto_blkdev; num_args = 10; SLOGI("Making empty filesystem with command %s %s %s %s %s %s %s %s %s %s\n", args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9]); } else { SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type); return -1; } tmp = android_fork_execvp(num_args, (char **)args, &status, false, true); if (tmp != 0) { SLOGE("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev); } else { if (WIFEXITED(status)) { if (WEXITSTATUS(status)) { SLOGE("Error creating filesystem on %s, exit status %d ", crypto_blkdev, WEXITSTATUS(status)); } else { SLOGD("Successfully created filesystem on %s\n", crypto_blkdev); rc = 0; } } else { SLOGE("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev); } } return rc; } #define CRYPT_INPLACE_BUFSIZE 4096 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512) static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size, off64_t *size_already_done, off64_t tot_size) { int realfd, cryptofd; char *buf[CRYPT_INPLACE_BUFSIZE]; int rc = -1; off64_t numblocks, i, remainder; off64_t one_pct, cur_pct, new_pct; off64_t blocks_already_done, tot_numblocks; if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev); return -1; } if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); close(realfd); return -1; } /* This is pretty much a simple loop of reading 4K, and writing 4K. * The size passed in is the number of 512 byte sectors in the filesystem. * So compute the number of whole 4K blocks we should read/write, * and the remainder. */ numblocks = size / CRYPT_SECTORS_PER_BUFSIZE; remainder = size % CRYPT_SECTORS_PER_BUFSIZE; tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE; blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE; SLOGE("Encrypting filesystem in place..."); one_pct = tot_numblocks / 100; cur_pct = 0; /* process the majority of the filesystem in blocks */ for (i=0; i cur_pct) { char buf[8]; cur_pct = new_pct; snprintf(buf, sizeof(buf), "%" PRId64, cur_pct); property_set("vold.encrypt_progress", buf); } if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) { SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev); goto errout; } } /* Do any remaining sectors */ for (i=0; iflags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) == (VOL_ENCRYPTABLE | VOL_NONREMOVABLE); } int cryptfs_enable(char *howarg, char *passwd) { int how = 0; char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN]; unsigned long nr_sec; unsigned char decrypted_master_key[KEY_LEN_BYTES]; int rc=-1, fd, i, ret; struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;; struct crypt_persist_data *pdata; char tmpfs_options[PROPERTY_VALUE_MAX]; char encrypted_state[PROPERTY_VALUE_MAX]; char lockid[32] = { 0 }; char key_loc[PROPERTY_VALUE_MAX]; char fuse_sdcard[PROPERTY_VALUE_MAX]; char *sd_mnt_point; char sd_blk_dev[256] = { 0 }; int num_vols; struct volume_info *vol_list = 0; off64_t cur_encryption_done=0, tot_encryption_size=0; property_get("ro.crypto.state", encrypted_state, ""); if (strcmp(encrypted_state, "unencrypted")) { SLOGE("Device is already running encrypted, aborting"); goto error_unencrypted; } fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc)); if (!strcmp(howarg, "wipe")) { how = CRYPTO_ENABLE_WIPE; } else if (! strcmp(howarg, "inplace")) { how = CRYPTO_ENABLE_INPLACE; } else { /* Shouldn't happen, as CommandListener vets the args */ goto error_unencrypted; } fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev)); /* Get the size of the real block device */ fd = open(real_blkdev, O_RDONLY); if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", real_blkdev); goto error_unencrypted; } close(fd); /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */ if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) { unsigned int fs_size_sec, max_fs_size_sec; fs_size_sec = get_fs_size(real_blkdev); max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512); if (fs_size_sec > max_fs_size_sec) { SLOGE("Orig filesystem overlaps crypto footer region. Cannot encrypt in place."); goto error_unencrypted; } } /* Get a wakelock as this may take a while, and we don't want the * device to sleep on us. We'll grab a partial wakelock, and if the UI * wants to keep the screen on, it can grab a full wakelock. */ snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid()); acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid); /* Get the sdcard mount point */ sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE"); if (!sd_mnt_point) { sd_mnt_point = getenv("EXTERNAL_STORAGE"); } if (!sd_mnt_point) { sd_mnt_point = "/mnt/sdcard"; } num_vols=vold_getNumDirectVolumes(); vol_list = malloc(sizeof(struct volume_info) * num_vols); vold_getDirectVolumeList(vol_list); for (i=0; i= 0) { write(fd, "--wipe_data", strlen("--wipe_data") + 1); close(fd); } else { SLOGE("could not open /cache/recovery/command\n"); } cryptfs_reboot(1); } else { /* set property to trigger dialog */ property_set("vold.encrypt_progress", "error_partially_encrypted"); release_wake_lock(lockid); } return -1; } /* hrm, the encrypt step claims success, but the reboot failed. * This should not happen. * Set the property and return. Hope the framework can deal with it. */ property_set("vold.encrypt_progress", "error_reboot_failed"); release_wake_lock(lockid); return rc; error_unencrypted: free(vol_list); property_set("vold.encrypt_progress", "error_not_encrypted"); if (lockid[0]) { release_wake_lock(lockid); } return -1; error_shutting_down: /* we failed, and have not encrypted anthing, so the users's data is still intact, * but the framework is stopped and not restarted to show the error, so it's up to * vold to restart the system. */ SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system"); cryptfs_reboot(0); /* shouldn't get here */ property_set("vold.encrypt_progress", "error_shutting_down"); free(vol_list); if (lockid[0]) { release_wake_lock(lockid); } return -1; } int cryptfs_changepw(char *newpw) { struct crypt_mnt_ftr crypt_ftr; unsigned char decrypted_master_key[KEY_LEN_BYTES]; /* This is only allowed after we've successfully decrypted the master key */ if (! master_key_saved) { SLOGE("Key not saved, aborting"); return -1; } /* get key */ if (get_crypt_ftr_and_key(&crypt_ftr)) { SLOGE("Error getting crypt footer and key"); return -1; } encrypt_master_key(newpw, crypt_ftr.salt, saved_master_key, crypt_ftr.master_key, &crypt_ftr); /* save the key */ put_crypt_ftr_and_key(&crypt_ftr); return 0; } static int persist_get_key(char *fieldname, char *value) { unsigned int i; if (persist_data == NULL) { return -1; } for (i = 0; i < persist_data->persist_valid_entries; i++) { if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { /* We found it! */ strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX); return 0; } } return -1; } static int persist_set_key(char *fieldname, char *value, int encrypted) { unsigned int i; unsigned int num; struct crypt_mnt_ftr crypt_ftr; unsigned int max_persistent_entries; unsigned int dsize; if (persist_data == NULL) { return -1; } /* If encrypted, use the values from the crypt_ftr, otherwise * use the values for the current spec. */ if (encrypted) { if(get_crypt_ftr_and_key(&crypt_ftr)) { return -1; } dsize = crypt_ftr.persist_data_size; } else { dsize = CRYPT_PERSIST_DATA_SIZE; } max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) / sizeof(struct crypt_persist_entry); num = persist_data->persist_valid_entries; for (i = 0; i < num; i++) { if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) { /* We found an existing entry, update it! */ memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX); strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX); return 0; } } /* We didn't find it, add it to the end, if there is room */ if (persist_data->persist_valid_entries < max_persistent_entries) { memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry)); strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX); strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX); persist_data->persist_valid_entries++; return 0; } return -1; } /* Return the value of the specified field. */ int cryptfs_getfield(char *fieldname, char *value, int len) { char temp_value[PROPERTY_VALUE_MAX]; char real_blkdev[MAXPATHLEN]; /* 0 is success, 1 is not encrypted, * -1 is value not set, -2 is any other error */ int rc = -2; if (persist_data == NULL) { load_persistent_data(); if (persist_data == NULL) { SLOGE("Getfield error, cannot load persistent data"); goto out; } } if (!persist_get_key(fieldname, temp_value)) { /* We found it, copy it to the caller's buffer and return */ strlcpy(value, temp_value, len); rc = 0; } else { /* Sadness, it's not there. Return the error */ rc = -1; } out: return rc; } /* Set the value of the specified field. */ int cryptfs_setfield(char *fieldname, char *value) { struct crypt_persist_data stored_pdata; struct crypt_persist_data *pdata_p; struct crypt_mnt_ftr crypt_ftr; char encrypted_state[PROPERTY_VALUE_MAX]; /* 0 is success, -1 is an error */ int rc = -1; int encrypted = 0; if (persist_data == NULL) { load_persistent_data(); if (persist_data == NULL) { SLOGE("Setfield error, cannot load persistent data"); goto out; } } property_get("ro.crypto.state", encrypted_state, ""); if (!strcmp(encrypted_state, "encrypted") ) { encrypted = 1; } if (persist_set_key(fieldname, value, encrypted)) { goto out; } /* If we are running encrypted, save the persistent data now */ if (encrypted) { if (save_persistent_data()) { SLOGE("Setfield error, cannot save persistent data"); goto out; } } rc = 0; out: return rc; }